Introduction to Finite Element Method, One-Dimensional Elements-Analysis of Bars:
Engineering Analysis, History, Advantages, Classification, Basic steps, Convergence criteria, Role of finite element analysis in computer-aided design., Mathematical Preliminaries, Differential equations formulations, Variational formulations, weighted residual methods. Basic Equations and Potential Energy Functional, 1-0 Bar Element, Strain matrix, Element equations, Stiffness matrix, Consistent nodal force vector: Body force, Initial strain, Assembly Procedure, Boundary and Constraint Conditions, Single point constraint, Multi-point constraint, 2-D Bar Element.
Two-Dimensional Elements-Analysis, Three-Dimensional Elements-Applications and Problems:
Three-Noded Triangular Element (TRIA 3), Four-Noded Quadrilateral Element (QUAD 4), Shape functions for Higher Order Elements (TRIA 6, QUAD 8) . Basic Equations and Potential Energy Functional, Four-Noded Tetrahedral Element (TET 4), EightNoded Hexahedral Element (HEXA 8), Tetrahedral elements, Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family. Shape functions for Higher Order Elements.
Aero Structural analysis through FEM for Beams and Trusses:
1–D Beam Element, 2–D Beam Element, shape functions and stiffness matrixes, Problems, trusses with one, two, three and four bar elements.
FEM analysis of Heat Transfer and Fluid Flow:
Steady state heat transfer, 1 D heat conduction governing equation, boundary conditions, One dimensional element, Functional approach for heat conduction, Galerkin approach for heat conduction, heat flux boundary condition, 1 D heat transfer in thin fins. Basic differential equation for fluid flow in pipes, around solid bodies, porous media.
FEM for Dynamic:
Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilatateral element, beam element. Lumped mass matrix, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars and beams.