CAMERAS:
Pinhole Cameras, Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases, Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models, Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.
Linear Filters:
Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge Detection: Noise, Estimating Derivatives, Detecting Edges, Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.
The Geometry of Multiple Views:
Two Views, Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras, Segmentation by Clustering: What Is Segmentation?, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,
Segmentation by Fitting a Model:
The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness, Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples.
Geometric Camera Models:
Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations, Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization, Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.
Course outcomes:
At the end of the course the student will be able to:
Question paper pattern:
The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.
Textbook/ Textbooks
1 Computer Vision – A Modern Approach David A. Forsyth and Jean Ponce PHI Learning 2009
Reference Books
1 Computer and Machine Vision – Theory, Algorithms and Practicalities E. R. Davies Elsevier 4 th edition, 2013