18CS643 Cloud Computing and its Applications syllabus for CS



A d v e r t i s e m e n t

Module-1 Introduction 8 hours

Introduction ,Cloud Computing at a Glance, The Vision of Cloud Computing, Defining a Cloud, A Closer Look, Cloud Computing Reference Model, Characteristics and Benefits, Challenges Ahead, Historical Developments, Distributed Systems, Virtualization, Web 2.0, Service-Oriented Computing, Utility-Oriented Computing, Building Cloud Computing Environments, Application Development, Infrastructure and System Development, Computing Platforms and Technologies, Amazon Web Services (AWS), Google AppEngine, Microsoft Azure, Hadoop, Force.com and Salesforce.com, Manjrasoft Aneka Virtualization, Introduction, Characteristics of Virtualized, Environments Taxonomy of Virtualization Techniques, Execution Virtualization, Other Types of Virtualization, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Technology Examples Xen: Paravirtualization, VMware: Full Virtualization, Microsoft Hyper-V

Textbook 1: Ch. 1,3

Module-2 Cloud Computing Architecture 8 hours

Cloud Computing Architecture, Introduction, Cloud Reference Model, Architecture, Infrastructure / Hardware as a Service, Platform as a Service, Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud Definition, Cloud Interoperability and Standards Scalability and Fault Tolerance Security, Trust, and Privacy Organizational Aspects Aneka: Cloud Application Platform, Framework Overview, Anatomy of the Aneka Container, From the Ground Up: Platform Abstraction Layer, Fabric Services, foundation Services, Application Services, Building Aneka Clouds, Infrastructure Organization, Logical Organization, Private Cloud Deployment Mode, Public Cloud Deployment Mode, Hybrid Cloud Deployment Mode, Cloud Programming and Management, Aneka SDK, Management Tools

Textbook 1: Ch. 4,5

Module-3 Concurrent Computing 8 hours

Concurrent Computing:

Thread Programming, Introducing Parallelism for Single Machine Computation, Programming Applications with Threads, What is a Thread?, Thread APIs, Techniques for Parallel Computation with Threads, Multithreading with Aneka, Introducing the Thread Programming Model, Aneka Thread vs. Common Threads, Programming Applications with Aneka Threads, Aneka Threads Application Model, Domain Decomposition: Matrix Multiplication, Functional Decomposition: Sine, Cosine, and Tangent.

High-Throughput Computing: Task Programming, Task Computing, Characterizing a Task, Computing Categories, Frameworks for Task Computing, Task-based Application Models, Embarrassingly Parallel Applications, Parameter Sweep Applications, MPI Applications, Workflow Applications with Task Dependencies, Aneka Task-Based Programming, Task Programming Model, Developing Applications with the Task Model, Developing Parameter Sweep Application, Managing Workflows.

Textbook 1: Ch. 6, 7

Module-4 Data Intensive Computing 8 hours

Data Intensive Computing:

Map-Reduce Programming, What is Data-Intensive Computing?, Characterizing Data-Intensive Computations, Challenges Ahead, Historical Perspective, Technologies for Data-Intensive Computing, Storage Systems, Programming Platforms, Aneka MapReduce Programming, Introducing the MapReduce Programming Model, Example Application

Textbook 1: Ch. 8

Module-5 Cloud Platforms in Industry 8 hours

Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage Services, Communication Services, Additional Services, Google AppEngine, Architecture and Core Concepts, Application Life-Cycle, Cost Model, Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance. Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the Cloud, Biology: Protein Structure Prediction, Biology: Gene Expression Data Analysis for Cancer Diagnosis, Geoscience: Satellite Image Processing, Business and Consumer Applications, CRM and ERP, Productivity, Social Networking, Media Applications, Multiplayer Online Gaming.

Textbook 1: Ch. 9,10

 

Course Outcomes:

The student will be able to :

  • Explain cloud computing, virtualization and classify services of cloud computing
  • Illustrate architecture and programming in cloud
  • Describe the platforms for development of cloud applications and List the application of cloud.

 

Question Paper Pattern:

  • The question paper will have ten questions.
  • Each full Question consisting of 20 marks
  • There will be 2 full questions (with a maximum of four sub questions) from each module.
  • Each full question will have sub questions covering all the topics under a module.
  • The students will have to answer 5 full questions, selecting one full question from each module.

 

Textbooks:

1. Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi Mastering Cloud. Computing McGraw Hill Education

 

Reference Books:

1. Dan C. Marinescu, Cloud Computing Theory and Practice, Morgan Kaufmann, Elsevier 2013.

Last Updated: Tuesday, January 24, 2023