Introduction: A Brief History, MOS Transistors, MOS Transistor Theory, Ideal I-V Characteristics, Non-ideal I-V Effects, DC Transfer Characteristics (1.1, 1.3, 2.1, 2.2, 2.4, 2.5 of TEXT2).
Fabrication: nMOS Fabrication, CMOS Fabrication [P-well process, N-well process, Twin tub process], BiCMOS Technology (1.7, 1.8,1.10 of TEXT1).
MOS and BiCMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout.
Basic Circuit Concepts: Sheet Resistance, Area Capacitances of Layers, Standard Unit of Capacitance, Some Area Capacitance Calculations, Delay Unit, Inverter Delays, Driving Large Capacitive Loads (3.1 to 3.3, 4.1, 4.3 to 4.8 of TEXT1).
Scaling of MOS Circuits: Scaling Models & Scaling Factors for Device Parameters
Subsystem Design Processes: Some General considerations, An illustration of Design Processes, Illustration of the Design Processes- Regularity, Design of an ALU Subsystem, The Manchester Carry-chain and Adder Enhancement Techniques(5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8.4.2 of TEXT1).
Subsystem Design: Some Architectural Issues, Switch Logic, Gate(restoring) Logic, Parity Generators, Multiplexers, The Programmable Logic Array (PLA) (6.1to 6.3, 6.4.1, 6.4.3, 6.4.6 of TEXT1).
FPGA Based Systems: Introduction, Basic concepts, Digital design and FPGA’s, FPGA based System design, FPGA architecture, Physical design for FPGA’s (1.1 to 1.4, 3.2, 4.8 of TEXT3).
Memory, Registers and Aspects of system Timing- System Timing Considerations, Some commonly used Storage/Memory elements (9.1, 9.2 ofTEXT1).
Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability (12.1, 12.1.1, 12.3, 12.5, 12.6 of TEXT 2).