Semiconductors
Bonding forces in solids, Energy bands, Metals, Semiconductors and Insulators, Direct and Indirect semiconductors, Electrons and Holes, Intrinsic and Extrinsic materials, Conductivity and Mobility, Drift and Resistance, Effects of temperature and doping on mobility, Hall Effect. (Text 1: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.2.3, 3.2.4, 3.4.1, 3.4.2, 3.4.3, 3.4.5).
P-N Junctions
Forward and Reverse biased junctions- Qualitative description of Current flow at a junction, reverse bias, Reverse bias breakdown- Zener breakdown, avalanche breakdown, Rectifiers. (Text 1: 5.3.1, 5.3.3, 5.4, 5.4.1, 5.4.2, 5.4.3) Optoelectronic Devices Photodiodes: Current and Voltage in an Illuminated Junction, Solar Cells, Photodetectors. Light Emitting Diode: Light Emitting materials.(Text 1: 8.1.1, 8.1.2, 8.1.3, 8.2, 8.2.1)
Bipolar Junction Transistor
Fundamentals of BJT operation, Amplification with BJTS, BJT Fabrication, The coupled Diode model (Ebers-Moll Model), Switching operation of a transistor, Cutoff, saturation, switching cycle, specifications, Drift in the base region, Base narrowing, Avalanche breakdown. (Text 1: 7.1, 7.2, 7.3, 7.5.1, 7.6, 7.7.1, 7.7.2, 7.7.3).
Field Effect Transistors
Basic pn JFET Operation, Equivalent Circuit and Frequency Limitations, MOSFETTwo terminal MOS structure- Energy band diagram, Ideal Capacitance – Voltage Characteristics and Frequency Effects, Basic MOSFET Operation- MOSFET structure, Current-Voltage Characteristics. (Text 2: 9.1.1, 9.4, 9.6.1, 9.6.2, 9.7.1, 9.7.2, 9.8.1, 9.8.2).
Fabrication of p-n junctions
Thermal Oxidation, Diffusion, Rapid Thermal Processing, Ion implantation, chemical vapour deposition, photolithography, Etching, metallization. (Text 1: 5.1)
Integrated Circuits
Background, Evolution of ICs, CMOS Process Integration, Integration of Other Circuit Elements. (Text 1: 9.1, 9.2, 9.3.1, 9.3.3).
Course outcomes:
After studying this course, students will be able to:
Question paper pattern:
Text Books:
1. Ben. G. Streetman, Sanjay Kumar Banergee, “Solid State Electronic Devices”, 7thEdition, Pearson Education, 2016, ISBN 978-93-325-5508-2.
2. Donald A Neamen, Dhrubes Biswas, “Semiconductor Physics and Devices”, 4th Edition, MCGraw Hill Education, 2012, ISBN 978-0-07-107010-2.
Reference Book:
1. S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd Edition, Wiley, 2018.
2. A. Bar-Lev, “Semiconductor and Electronic Devices”, 3rd Edition, PHI, 1993.