Calculus
Introduction to polar coordinates and curvature relating to EC & EE Engineering applications.
Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.
Self-study: Center and circle of curvature, evolutes and involutes.
Applications: Communication signals, Manufacturing of microphones, and Image processing.
(RBT Levels: L1, L2 and L3)
Series Expansion and Multivariable Calculus
Introduction of series expansion and partial differentiation in EC & EE Engineering applications.
Taylor’s and Maclaurin’s series expansion for one variable (Statement only) – problems. Indeterminate forms - L’Hospital’s rule - Problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.
Self-study: Euler’s Theorem and problems. Method of Lagrange’s undetermined multipliers with single constraint.
Applications: Series expansion in communication signals, Errors and approximations, and vector calculus.
(RBT Levels: L1, L2 and L3)
Ordinary Differential Equations (ODEs) of First Order
Introduction to first-order ordinary differential equations pertaining to the applications for EC & EE engineering.
Linear and Bernoulli’s differential equations. Exact and reducible to exact differential equations - Integrating factors on 1⁄ 𝑁 ( 𝜕𝑀⁄ 𝜕𝑦 − 𝜕𝑁⁄ 𝜕𝑥) 𝑎𝑛𝑑 1⁄ 𝑀 ( 𝜕𝑁⁄ 𝜕𝑥 − 𝜕𝑀⁄ 𝜕𝑦). Orthogonal trajectories, L-R and C-R circuits. Problems.
Non-linear differential equations:
Introduction to general and singular solutions, Solvable for p only, Clairaut’s equations, reducible to Clairaut’s equations. Problems.
Self-Study: Applications of ODEs, Solvable for x and y.
Applications of ordinary differential equations: Rate of Growth or Decay, Conduction of heat.
(RBT Levels: L1, L2 and L3)
Integral Calculus
Introduction to Integral Calculus in EC & EE Engineering applications.
Multiple Integrals:
Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by double integral. Problems.
Beta and Gamma functions:
Definitions, properties, relation between Beta and Gamma functions. Problems.
Self-Study: Volume by triple integration, Center of gravity.
Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory.
(RBT Levels: L1, L2 and L3)
Linear Algebra
Introduction of linear algebra related to EC & EE engineering applications.
Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh’s power method to find the dominant Eigenvalue and Eigenvector.
Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.
Applications of Linear Algebra:
Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.
(RBT Levels: L1, L2 and L3)
List of Laboratory experiments (2 hours/week per batch/ batch strength 15) 10 lab sessions + 1 repetition class + 1 Lab Assessment
1 2D plots for Cartesian and polar curves
2 Finding angle between polar curves, curvature and radius of curvature of a given curve
3 Finding partial derivatives and Jacobian
4 Applications to Maxima and Minima of two variables
5 Solution of first-order ordinary differential equation and plotting the solution curves
6 Program to compute area, volume and centre of gravity
7 Evaluation of improper integrals
8 Numerical solution of system of linear equations, test for consistency and graphical representation
9 Solution of system of linear equations using Gauss-Seidel iteration
10 Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by Rayleigh power method.
Suggested software’s: Mathematica/MatLab/Python/Scilab
Course outcome (Course Skill Set)
At the end of the course the student will be able to:
CO1 apply the knowledge of calculus to solve problems related to polar curves and learn the notion of partial differentiation to compute rate of change of multivariate functions
CO2 analyze the solution of linear and nonlinear ordinary differential equations
CO3 apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing area and volume
CO4 make use of matrix theory for solving the system of linear equations and compute eigenvalues and eigenvectors
CO5 familiarize with modern mathematical tools namely MATHEMATICA/ MATLAB/ PYTHON/SCILAB
Assessment Details (both CIE and SEE)
Continuous Internal Evaluation (CIE):
The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks. CIE for the theory component of the IC
Semester End Examination(SEE):
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)
Suggested Learning Resources:
Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
Text Books
1. B. S. Grewal: “Higher Engineering Mathematics”, Khanna Publishers, 44th Ed., 2021.
2. E. Kreyszig: “Advanced Engineering Mathematics”, John Wiley & Sons, 10th Ed., 2018.
Reference Books
1. V. Ramana: “Higher Engineering Mathematics” McGraw-Hill Education, 11th Ed., 2017
2. Srimanta Pal & Subodh C. Bhunia: “Engineering Mathematics” Oxford University Press, 3 rd Ed., 2016.
3. N.P Bali and Manish Goyal: “A Textbook of Engineering Mathematics” Laxmi Publications, 10th Ed., 2022.
4. C. Ray Wylie, Louis C. Barrett: “Advanced Engineering Mathematics” McGraw – Hill Book Co., New York, 6th Ed., 2017.
5. Gupta C.B, Sing S.R and Mukesh Kumar: “Engineering Mathematic for Semester I and II”, Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6. H. K. Dass and Er. Rajnish Verma: “Higher Engineering Mathematics” S. Chand Publication, 3rd Ed., 2014.
7. James Stewart: “Calculus” Cengage Publications, 7th Ed., 2019.
8. David C Lay: “Linear Algebra and its Applications”, Pearson Publishers, 4 th Ed., 2018.
9. Gareth Williams: “Linear Algebra with Applications”, Jones Bartlett Publishers Inc., 6th Ed., 2017.
10. Gilbert Strang: “Linear Algebra and its Applications”, Cengage Publications, 4th Ed. 2022.