15EC753 Pattern Recognition syllabus for TE



A d v e r t i s e m e n t

Module-1 Introduction 8 hours

Introduction: Importance of pattern recognition, Features, Feature Vectors, and Classifiers, Supervised, Unsupervised, and Semi-supervised learning, Introduction to Bayes Decision Theory, Discriminant Functions and Decision Surfaces, Gaussian PDF and Bayesian Classification for Normal Distributions.

Module-2 Data Transformation and Dimensionality Reduction 8 hours

Data Transformation and Dimensionality Reduction: Introduction, Basis Vectors, The Karhunen Loeve (KL) Transformation, Singular Value Decomposition, Independent Component Analysis (Introduction only). Nonlinear Dimensionality Reduction, Kernel PCA.

Module-3 Estimation of Unknown Probability Density Functions 8 hours

Estimation of Unknown Probability Density Functions: Maximum Likelihood Parameter Estimation, Maximum a Posteriori Probability estimation, Bayesian Interference, Maximum Entropy Estimation, Mixture Models, Naive-Bayes Classifier, The Nearest Neighbor Rule.

Module-4 Linear Classifiers 8 hours

Linear Classifiers: Introduction, Linear Discriminant Functions and Decision Hyperplanes, The Perceptron Algorithm, Mean Square Error Estimate, Stochastic Approximation of LMS Algorithm, Sum of Error Estimate.

Module-5 Nonlinear Classifiers 8 hours

Nonlinear Classifiers: The XOR Problem, The two Layer Perceptron, Three Layer Perceptron, Back propagation Algorithm, Basic Concepts of Clustering, Introduction to Clustering , Proximity Measures.

Last Updated: Tuesday, January 24, 2023